Mapping Viscoelastic and Plastic Properties of Polymers and Polymer-Nanotube Composites using Instrumented Indentation.

نویسندگان

  • Andrew J Gayle
  • Robert F Cook
چکیده

An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...

متن کامل

Prediction of viscoelastic and plastic properties of polymers using indentation

Indentation methodologies are gaining popularity as they provide means of local property estimation, utilize smaller sample sizes, and do not destroy specimens. Classically, indentation has been used to measure hardness and Young’s modulus [1], but researchers have also proposed ways of predicting stress–strain curves [2], yield strength [3], and fracture toughness [3]. Different indentation te...

متن کامل

Finer-Scale Extraction of Viscoelastic Properties from Nanoindentation Characterised by Viscoelastic–Plastic Response

Motivated by recent progress in viscoelastic indentation analysis, the identification of viscoelastic properties from materials exhibiting elastic, viscous and plastic material behaviour by means of nanoindentation is dealt with in this paper. Based on existing solutions for pure viscoelastic material behaviour, two methods allowing us to consider the effect of plastic deformation are presented...

متن کامل

Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: methodologies for hierarchical composites.

The introduction of carbon nanotubes (CNTs) modifies bulk polymer properties, depending on intrinsic quality, dispersion, alignment, interfacial chemistry and mechanical properties of the nanofiller. These effects can be exploited to enhance the matrices of conventional microscale fibre-reinforced polymer composites, by using primary reinforcing fibres grafted with CNTs. This paper presents a m...

متن کامل

Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites

Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials research

دوره 31 15  شماره 

صفحات  -

تاریخ انتشار 2016